Use of a Strongly Nonlinear Gambier Equation for the Construction of Exact Closed Form Solutions of Nonlinear ODEs
نویسنده
چکیده
We establish an analytical method leading to a more general form of the exact solution of a nonlinear ODE of the second order due to Gambier. The treatment is based on the introduction and determination of a new function, by means of which the solution of the original equation is expressed. This treatment is applied to another nonlinear equation, subjected to the same general class as that of Gambier, by constructing step by step an appropriate analytical technique. The developed procedure yields a general exact closed form solution of this equation, valid for specific values of the parameters involved and containing two arbitrary (free) parameters evaluated by the relevant initial conditions. We finally verify this technique by applying it to two specific sets of parameter values of the equation under consideration.
منابع مشابه
Exact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملConstruction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations)
We provide a new mathematical technique leading to the construction of the exact parametric or closed form solutions of the classes of Abel’s nonlinear differential equations ODEs of the first kind. These solutions are given implicitly in terms of Bessel functions of the first and the second kind Neumann functions , as well as of the free member of the considered ODE; the parameter ν being intr...
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007